Optimal Multi-Degree Reduction of Bézier Curves with Constraints, Using Matrix Computations
نویسندگان
چکیده
منابع مشابه
Optimal multi-degree reduction of Bézier curves with G2-continuity
In this paper we present a novel approach to consider the multi-degree reduction of Bézier curves with G2-continuity in L2norm. The optimal approximation is obtained by minimizing the objective function based on the L2-error between the two curves. In contrast to traditional methods, which typically consider the components of the curve separately, we use geometric information on the curve to ge...
متن کاملDegree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملDegree Reduction of Disk Wang-Bézier Type Generalized Ball Curves
A disk Wang-Bézier type generalized Ball curve is a Wang-Bézier type generalized Ball curve whose control points are disks in a plane. It can be viewed as a parametric curve with error tolerances. In this paper, we discuss the problem of degree reduction of disk Wang-Bézier type generalized Ball curve, that is, bounding disk Wang-Bézier type generalized Ball curves with lower degree disk Wa...
متن کاملMulti-degree reduction of triangular Bézier surfaces with boundary constraints
Given a triangular Bézier surface of degree n, the problem of multi-degree reduction by a triangular Bézier surface of degree m with boundary constraints is investigated. This paper considers the continuity of triangular Bézier surfaces at the three corners, so that the boundary curves preserve endpoints continuity of any order α. The l2and L2-norm combined with the constrained least-squares me...
متن کاملA unified matrix representation for degree reduction of Bézier curves
In this paper, we show the degree reduction of Bézier curves in a matrix representation. Most degree reduction algorithms have been described as a set of recursive equations which are based on the inverse problem of degree elevation. However, degree elevation can be easily expressed in terms of matrices. Motivated by this observation, we represent most well known degree reduction algorithms in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer and Electrical Engineering
سال: 2012
ISSN: 1793-8163
DOI: 10.7763/ijcee.2012.v4.586